EnglishFrenchSpanish

OnWorks favicon

m.transformgrass - Online in the Cloud

Run m.transformgrass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command m.transformgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


m.transform - Computes a coordinate transformation based on the control points.

KEYWORDS


miscellaneous, transformation, GCP

SYNOPSIS


m.transform
m.transform --help
m.transform [-srx] group=name order=integer [format=string[,string,...]] [input=name]
[--help] [--verbose] [--quiet] [--ui]

Flags:
-s
Display summary information

-r
Reverse transform of coords file or coeff. dump
Target east,north coordinates to local x,y

-x
Display transform matrix coefficients

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
group=name [required]
Name of input imagery group

order=integer [required]
Rectification polynomial order
Options: 1-3

format=string[,string,...]
Output format
Options: idx, src, dst, fwd, rev, fxy, rxy, fd, rd
Default: fd,rd
idx: point index
src: source coordinates
dst: destination coordinates
fwd: forward coordinates (destination)
rev: reverse coordinates (source)
fxy: forward coordinates difference (destination)
rxy: reverse coordinates difference (source)
fd: forward error (destination)
rd: reverse error (source)

input=name
File containing coordinates to transform ("-" to read from stdin)
Local x,y coordinates to target east,north

DESCRIPTION


m.transform is an utility to compute transformation based upon GCPs and output error
measurements.

NOTES


For coordinates given with the input file option or fed from stdin, the input format is "x
y" with one coordinate pair per line.

The transformations are:

order=1:
e = [E0 E1][1].[1]
[E2 0][e] [n]
n = [N0 N1][1].[1]
[N2 0][e] [n]
order=2:
e = [E0 E1 E3][1 ] [1 ]
[E2 E4 0][e ].[n ]
[E5 0 0][e²] [n²]
n = [N0 N1 N3][1 ] [1 ]
[N2 N4 0][e ].[n ]
[N5 0 0][e²] [n²]
order=3:
e = [E0 E1 E3 E6][1 ] [1 ]
[E2 E4 E7 0][e ].[n ]
[E5 E8 0 0][e²] [n²]
[E9 0 0 0][e³] [n³]
n = [N0 N1 N3 N6][1 ] [1 ]
[N2 N4 N7 0][e ].[n ]
[N5 N8 0 0][e²] [n²]
[N9 0 0 0][e³] [n³]
["." = dot-product, (AE).N = N’EA.]

In other words, order=1 and order=2 are equivalent to order=3 with the higher coefficients
equal to zero.

Use m.transformgrass online using onworks.net services


Ad


Ad