This is the Windows app named LLM Course whose latest release can be downloaded as llm-coursesourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named LLM Course with OnWorks for free.
Làm theo các hướng dẫn sau để chạy ứng dụng này:
- 1. Đã tải ứng dụng này xuống PC của bạn.
- 2. Nhập vào trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 3. Tải lên ứng dụng này trong trình quản lý tệp như vậy.
- 4. Khởi động bất kỳ trình giả lập trực tuyến OS OnWorks nào từ trang web này, nhưng trình giả lập trực tuyến Windows tốt hơn.
- 5. Từ Hệ điều hành Windows OnWorks bạn vừa khởi động, hãy truy cập trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 6. Tải xuống ứng dụng và cài đặt nó.
- 7. Tải xuống Wine từ kho phần mềm phân phối Linux của bạn. Sau khi cài đặt, bạn có thể nhấp đúp vào ứng dụng để chạy chúng với Wine. Bạn cũng có thể thử PlayOnLinux, một giao diện đẹp mắt trên Wine sẽ giúp bạn cài đặt các chương trình và trò chơi phổ biến của Windows.
Wine là một cách để chạy phần mềm Windows trên Linux, nhưng không cần Windows. Wine là một lớp tương thích Windows mã nguồn mở có thể chạy các chương trình Windows trực tiếp trên bất kỳ máy tính để bàn Linux nào. Về cơ bản, Wine đang cố gắng triển khai lại đủ Windows từ đầu để nó có thể chạy tất cả các ứng dụng Windows đó mà không thực sự cần đến Windows.
MÀN HÌNH
Ad
Khóa học LLM
MÔ TẢ
LLM Course is a hands-on, notebook-driven path for learning how large language models work in practice, from data curation to training, fine-tuning, evaluating, and deploying. It emphasizes reproducible experiments: each step is demonstrated with runnable code, clear dependencies, and references to commonly used open-source models and libraries. Learners get exposure to multiple adaptation strategies—LoRA/QLoRA, instruction fine-tuning, and alignment techniques—so they can choose approaches that fit their hardware and budgets. The materials also cover inference optimization and quantization to make serving LLMs feasible on commodity GPUs or even CPUs, which is crucial for side projects and startups. Evaluation is treated as a first-class topic, with examples of automatic and human-in-the-loop methods to catch regressions and verify quality beyond simple loss values. By the end, students have a mental model and a practical toolkit for iterating on datasets, training configs, etc.
Tính năng
- End-to-end notebooks covering data prep, training, fine-tuning, and serving
- Practical focus on LoRA/QLoRA, instruction tuning, and alignment workflows
- Guidance for resource-constrained hardware plus quantization techniques
- Reproducible setups with pinned dependencies and clear configs
- Evaluation notebooks for automated metrics and human review loops
- Tips for packaging, inference optimization, and lightweight deployment
Ngôn ngữ lập trình
JavaScript
Danh Mục
This is an application that can also be fetched from https://sourceforge.net/projects/llm-course.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
